Differentially Private Multi-dimensional Time Series Release for Traffic Monitoring
نویسندگان
چکیده
Sharing real-time traffic data can be of great value to understanding many important phenomena, such as congestion patterns or popular places. To this end, private user data must be aggregated and shared continuously over time with data privacy guarantee. However, releasing time series data with standard differential privacy mechanism can lead to high perturbation error due to the correlation between time stamps. In addition, data sparsity in the spatial domain imposes another challenge to user privacy as well as utility. To address the challenges, we propose a real-time framework that guarantees differential privacy for individual users and releases accurate data for research purposes. We present two estimation algorithms designed to utilize domain knowledge in order to mitigate the effect of perturbation error. Evaluations with simulated traffic data show our solutions outperform existing methods in both utility and computation efficiency, enabling real-time data sharing with strong privacy guarantee.
منابع مشابه
Vehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملDifferentially Private Synthesization of Multi-Dimensional Data using Copula Functions
Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and c...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملDifferentially Private Local Electricity Markets
Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...
متن کاملA Novel Method for Travel System Patterns
Due to population growth in urban areas, especially in the capital cities in developing countries, the use of private vehicles are increasing, leading to many problems such as congestion, pollution, noise, long travel time, high travel cost and more side effects. In such circumstances government policy would encourage people to use public transportation. In the meantime, employing the Intellige...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013